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We extend the Kolmogorov phenomenology for the scaling of energy spectra in high-Reynolds-number
turbulence, to explicitly include the effect of helicity. There exists a time segléor helicity transfer in
homogeneous, isotropic turbulence with helicity. We arrive at this time scale using the phenomenological
arguments used by Kraichnan to derive the time seal®r energy transfefR. H. Kraichnan, J. Fluid Mech.
47,525(1971)]. We show that in genera}; may not be neglected comparedsg even for rather low relative
helicity. We then deduce an inertial range joint cascade of energy and helicity in which the dynamics are
dominated byrg in the low wave numbers with both energy and helicity spectra scalihg®ss and by, at
larger wave numbers with spectra scalingka&®. We demonstrate how, within this phenomenology, the
commonly observed “bottleneck” in the energy spectrum might be explained. We derive a wave fymber
which is less than the Kolmogorov dissipation wave number, at which both energy and helicity cascades
terminate due to dissipation effects. Data from direct numerical simulations are used to check our predictions.
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Energy and helicity{1,2] are the two known inviscid in- two-point spatial correlation functionﬁiﬁ(r):%(ui(x)uj(x
variants of the Navier—Stokes equations. It was postulated ifr)+u;(x)u;(x+r)) which has the tensor representation
Ref. [3] that in iSOtrOpiC flows with hellClty, these quantities ~A(r)5” +B(r)(rirj/r2) for the isotropic case; the incom-
cascade together from large to small scales. This joint forpressibility constraint gives a relationship betwen) and

ward cascade of energy and helicity has been verified by Thjs index-symmetric correlation function thus has
direct numerical simulations, most recently at a resolution of

512 grid points[4]. Kraichnan[5] defined the shear time nofnzetro tChO”t”b““f{[‘S V\:hdm,j,’ andrl atr_e CO'P'i’?ar- le will
scaler: for energy transfer, based solely on energy dynam!€'e" to these as ‘in-plane™ correlationtsee Fig. 1 for a

ics. Assuming that helicity dynamics are also controlled bysgetcﬂ of theste ty?ej Of.t'fIOELOp'C ctprrelatlpt®m|larlly, EQ. ¢
7, a k¥ inertial range scaling was established for both(2) When contracted wi € antisymmetric_curl operator

energy and he||c|ty Spect[[@]_ iSijI k|, Whel’eiZ \f’_—]., and then aVeraged O\A’égives the total
We would first like to ascribe spatial geometrical proper-helicity densityH(k) =2kE(k). [Note that this relationship is
ties to the types of quantities used to derive the relevant timglistinct from the Schwartz inequalityH(k)|<2kE(k).]

scales. We recall the spectral formulatign(k)yj (k)) of the  Therefore the types of correlations contributingggk) [and
two-point velocity correlation function in isotropic, homoge- hence toH(K)] are those in which. J, and unit wave vector
neous, statistically stationary turbulence. It may be decom: ] ak

posed into its index-symmetric and index-antisymmetrick are mutually orthogonal. Again, the corresponding formu-
parts as lation in real space is the index-antisymmetric two-point spa-
L ., . tial correlation functionsl%?(r):%(ui(x)uj(x+r)—uj(x)ui(x
Eij(k) = 5[€@(k)T; (k)) + T (k)T; (k)] (1) +r)) which has the tensor representatiem;;r,/r and thus

has nonzero contributions whenj, andf are mutually or-

E;j (k) = 3L (KT, (K)) - T (T, (k))], 2

R u(x+r
whereli;=T;i andt; is the magnitude of thh component of /
the velocity vector in a chosen Cartesian coordinate system. u,(x)
Equation(1) when contracted with the projection operator () u(x+1) T
8;/2 and then averaged ovér gives the energy spectrum . . A .
E(k). It is therefore clear that the types of correlations con- r r

tributing toE(k) are those in whichi=] and hence, j and the FIG. 1. The in-plane longitudinal and transverse correlation con-

unit wave vectok all lie in the same plane. The correspond- figurations which contribute to the isotropic symmetric correlation
ing picture in real space is to consider the index-symmetridunction Rﬁ‘(r).
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u (X) flow for k<2 at each time step. The forcing scheme was the
! same as in Ref8]. For case | we imposed maximum helicity
in k<2 [4,9], resulting in a mean helicity over time of —26.8
in the units of our simulation. For case Il the helicity input
was uncontrolled and random, resulting in a mean helicity of
& —0.12 which is essentially zero compared to case |. The spec-
tra for case | were averaged over 40 snapshots spanning eight
large-eddy turnover times after spin up. The spectra for case
Il were averaged over 48 snapshots spanning two large-eddy
u_(x + r) turnover times after spin up. The spin up time in each case
J was defined to be when the input rate of energy matched the
dissipation rate of energy, the flow having achieved statisti-
_FIG. 2. The out-of-plane correlation configuration which con- c4|ly steady state. Additional parameters of the simulations
tributes to the isotropic antisymmetric correlation functi@{ﬁ‘(r). are given in Table I.
The intrinsic “handedness” of_ this configuration, |_nd|cated by the We recall the introduction in Ref5] of the distortion
curved arrow, cannot appear in the geometry of Fig. 1. time scale(or eddy-turnover timgof an eddy with wave
numberk,

thogonal to each othésee Fig. 2 for a sketghWe will refer
to these as ‘“out-of-plane” correlations. Her&(k) K 1
=S HU(0) andH(9 =-(K) -3(-k) wherefi(k) and 2~ ( [ E(p)pzdp) CEORTL @
w(k) are the Fourier transforms of the velocityx) and the 0
vorticity w(x)=V Xu(x), respectively.

The Kraichnan time scale for energy transter corre-  where Kraichnan asssumes that only wave numiseesvill
sponds to correlations of the tyjg (k) [Eq.(1)] which arise  have a shearing action on wave numbers of ordethe
due to shearing motions in the plane of coordinatgsand  effects from wave numbersk will average out. Notice that _
unit wave numbek [5]. Such in-plane shearing motions can- (€ ocal shear time scale thus defined depends on the in-

L . ~ . plane correlations which contribute to the energy spectrum as

not give rise to correlations of the tyf (k) [Eq.(2] which  joserined above. Analogously, we can define the time scale
relate orthogonal components andu;j across the third mu- 7, for out-of-plane distortions of an eddy, from the antisym-
tually orthogonal directiork. For this we require out-of- metric co-spectrum,
plane shearing motions as depicted in Fig. 2, which are pro-
vided by the presence of helicifys,7]. We first derive the k o ) -1 1 5 -1
time scaler, associated with such an out-of-plane shear. 7~ f [E(p)|p*dp| ~ <§|H(k)|k> :
The governing factor is the relative helicifif(k)|/[2KE(k)] 0
which will be shown to fall off linearly in wave number
restoring parity ak becomes very large. Crucially, we will
show that the ratiore/ 7y ~ {|H(K)|/[2KE(K)T}*?, which de-
cays slower than the relative helicity. Therefore the effect o
74 cannot be neglected. We demonstrate the effect of thi

(4)

The distortion or shear corresponding4gis different from

the distortion corresponding te- of Ref. [5]. The shear in

ithe former case derives from the out-of-plane correlations
ontributing to the antisymmetric co-spectrum and hence to

new time scale on energy and helicity spectra, and offer aﬁ“e hfeI|IC|ty speptrrm. -Lheh SL‘eaf motlonl n tg'.]ff case 'ﬁ an

interpretation of the “bottleneck” effect observed in mea-oh'“'t'.0 -plane tvr\]”St or which the tlrg_e scale is different than

sured energy spectra. Finally, the new dynamics reveal a di§-e In-plane shear rate correspondingréo

sipation scale which is larger than the Kolmogorov dissipa- We estimate the transfer raféux) of helicity through

~ ~ k2 3/2 i
tion scale, suggesting that the joint cascade is truncatef2Ve number|_<, Fﬂ(k) k|H(k)|/TH_ k “_—'(k)' - Assuming
sooner in wave-number space if helicity is present. steady-state, inertial range behavior with constant flux of he-

We performed two simulations of the three—dimensionalIiCity Fr(k)=h, the mean helicity dissipation rate, we obtain
(3D), forced Navier-Stokes equation in a unit-periodic box ol 43
with 512 (data ), and 1024(data 1) grid points to a side, H(K) =~ h=*K""=, (5)
respectively. In these units, the wave numkes in integer
multiples of 2r. Energy and helicity were injected into the We comparery with the time scale for energy transfer of

TABLE |. Parameters of the numerical simulations | andulis the viscosityR, is the Taylor-Reynolds
number; mean total energ&=%2kﬁ(k)2; e is the mean energy dissipation rate; mean total helieity
=3,di(k)-@(-k); h is the mean helicity dissipation rate;,=(v%/&)"4; 7,=(v3/h)¥>,

N v(units of 1) R, E P H h  p.(unitsof 1)  #,(units of 1¢)
I 512 1 270 172 151 -26.8 62.2 1.7 9
I 1024 0.35 430 1.87 1.75 -0.12 13.2 1.3 4

066313-2



CASCADE TIME SCALES FOR ENERGY AND HELICITY.. PHYSICAL REVIEW E 69, 066313(2004)

Eqg. (3), the scaling is most certainly nd> throughout and the
112 agreement withk™*3 though over a short range, certainly
Te _ (M) (6)  indicates shallower thaki > scaling behavior of the bottle-
v\ 2KE(k) neck region. The relative helicities in the range<10< 100,

Since {|H(K)|/[2KEK)J}*2> [H(K)|/[2KE(K)] as the latter Wher_e thek .4’.3 scaling is seen, are shown in Fig. 4. For I, the
tends to zero, Eq6) implies that even for small values of relat|v§ helicity falls fr_om about 10% to about 3%_corre—
the relative helicity, the time scales can become comparabl&Ponding torg/ 7, ranging from 32% to 17% according to
This is a fundamental point of difference from previous Ed- (6). Despite the negligibly small total helicity=-0.12
works in which the presence of helicity was considered in-Of Il, and its noisy helicity spectrurmnot shown, its relative
consequentigl3]. In previous arguments the fact that relative helicity values lie between 1% and 5%. This implies that
helicity must go to zero as k/in wave-number space meant 7e/ 7y could be as much as 22%. In both casgsmight in
that helicity could not have an effect on the long term dy-fact not be much longer thast. It is important at this stage
namics since it must eventually be dominated by energyto comment on the appearance of a helicity-dependent scal-
restoring parity. Our present analysis shows that while théng feature in flow Il which is nominally helicity free on
relative helicity does indeed go rapidly to zero, the relativeaverage. The first point is that zero average helicity does not
time scaleof helicity and energy transfer vanishes muchimply that the average helicity spectrusik) is zero for all
more slowly. In other words, while the energy time scale is, |n fact, we only input energy and helicity in the low wave
always faster, because of the Schwartz equality, the helicityympers, the Navier-Stokes dynamics determines the helicity
time scale can remain comparable to it well into the largep 5| other wave numbers, including the highest wave num-
wave numbers(For the initial ve}lue problem(iiecf’:lylng tla_lr'_ bers where in fact there is the well-known viscous helicity
bulencg, the evolution equation of the relative helicity yroduction. There is therefore no control of the helicity in a
H(k)/[2kE(k)] and its analytical bounds can be found in Ref-given wave number and the spectrum is generally not zero
(101.) _ _ ___everywhere. The second point is that our analysis shows that
With this second time scale at hand, we can now justifiit js not the total helicity but theelative helicity which de-
ably ask what the effect ofy will be on the energy spec- termines the tradeoff between the two time scales. Given

trum. The energy flux through wave numbek is these two points it is not contradictory to measkir&3 spec-
KE(K) tral scaling in the flow with negligible mean helicity. In fact,
£~ ~ KE(K)H (k). (7 this flow is probably more similar to most experimental
H flows which are close to helicity free in the mean but with
Using Eq.(5) in Eq. (7), we get uncontrolled and often unknown helicity specffd].
These results are the first indication of the possibility of
E(k) =~ eh ™43, (8)  k*3scaling ranges in both energy and helicity spectra simul-

taneously. The possibility of a “pure” or “maximal” forward
cascade of helicity scaling 452 [3] with inverse cascade
of energy scaling ak™’’® does not arise. This is because in
our analysis we have retained the effect of the helical time
scale r; and allowed it to modify the spectral dynamics.

ince the scaling corresponding#gis k™#3, a slower decay
thank™>73, its “signature” in the spectra can dominate at large
k even as the overall parity is being restored.

To summarize thus far, the: dynamics result in Kolmog-
orov k2 scaling in both energy and helicity spectra,
whereasry, dynamics result irk™# scaling in both. Clearly,
the steepek " scaling should dominate in the low wave
numbers while thé& /3 should manifest in the higher wave
numbers. We emphasize that in order for the latter scaling t
be visible in the high wave numbers, cannot be too much
slower than7z. As shown above, according to , this :
may occur foEr very modest relative helicitygin thicﬁ)igh wave Based on the analysis above, we propose that the bottle-

numbers, contrary to previous assumptions. The main poirﬂecll_( n tfhti total energy stpectrl;m '5%2,3“30‘3@”99 mh_thr?
of our paper is that in general, the helicity time scalemay scalingor the energy spectrum, from re_g',g]e in whic
not be ignored. the 7= dynamics dominate to a less stek’® regime in

Figure 3 shows the energy and helicity spectra from owWhiCh theTH dynamics become §ignificant. We will use the
simulations. Each of the spectra is compensate#*yand Kinematic arguments of Refi1 2] with our new phenomenol- :
by k2 in order to distinguish the dominant scaling. For the®9Y and dynamics to analyze the bottleneck for such a heli-

: - | influence. In simulations, it is possible to compute the
strongly helical case I, there is good agreement WitH® ca RPN RPN
scaling for both the energy and helicity spectra in approxi-tOtaI energy spectrurﬁ(k)—(l/Z)E‘k‘:du(k)| as a sum over
mately the same rand&igs. 3a) and 3b)] of slightly less & shell_of radiusk rather accuratt_aly. In_ experiments it is
than a decade. Note that the compensation Wifhresults in ~ convenient to measure the one-dimensiofia)) longitudi-

the commonly observed bottleneck phenomenon which waal and transverse spectra glong the measurement direction,
will discuss below. The energy spectrum of [Fig. 3c)] Sz In our 3D flow S|m_ulat|on we cqlculatg the_ 1D spectra
shows a range o3 scaling followed by a range d¢#3 ~ as follows. The ~1D Fourier transform in tzalirection of the
scaling(which appears as a bottleneck in &' compen-  Velocity u(x) is T(x,y, k) =(1/N)=\.; €%#u(x,y,z,) where
sated plot The scaling ranges are modest even at this higd<k,=< w/z. The longitudinal(transversg 1D spectrum,
resolution of 102% but nonetheless the results are telling; averaged over the-y plane, is defined by
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FIG. 3. Compensated spectra(@j energy andb) helicity, for data |. Observe thi*3 scaling(dashed curverange indicated by the
horizontal line segmentc) Compensated energy spectrum for data Il. The horizontal line segments indicate rakgéy(sélid curve and
k=43 (dashed curvescaling.

1 N of the total spectrunk(k) is fully determined by the local
E k) = 2N > [y (X Yar KD 2, (9 behavior ofE, andE; at a given wave number. For homo-
P.a=1 geneous, isotropic flows with helicity, it is reasonable to sup-

where |ﬁL|2:|ﬁx|2+|ﬁy|2- In isotropic flow, the 1D spectra pose thatg, (k) [see the definition in Eq9)] would mainly

should be independent of the direction in which the Fourielf_'arry contEnbEnoni_frhor_n thle m(;plan(:] shear time scale
transform is performed. Our time-averaged longitudinal?OWeVer, Ex(K), which is related to the transverse compo-

spectra computed in the they, andz directions all collapse nents of the velocity Fourier~transform, could be influenced
and the transverse spectra do the same. We average the b 7y dynamics coming frontE(k). The correlation time be-
spectra in the three coordinate directions and drop the use ofveen transverse components can be slowed down by the
the subgcriplz to denote the_ directio_n of the Fourier trans- dynamics oﬁé(k) which arise due to the presence of helicity.
gol;ms. Igcltsrot{gpic flow there is a relation between the 1D andg ., coupling may not be deduced from kinematic argu-
pectrg12,13, ments; it requires proper consideration of the new dynamics.
dE, _dEr Furthermore, it is not possible to see this coupling in the
E(k) = -k<ﬁ + 2@)- (10)  unclosed lowest-order Karman-Howarth dyanamical equa-
tions wherein the symmetric and antisymmetric parts com-
Our spectra satisfy Eq10) very well for k=10 and fairly = pletely decouple for homogeneous floy§. It was pointed
well in the lower wave numbers. As emphasized in RE?], out in Ref.[6] that higher-order statistical equations for he-
Eq. (10) is a local relationship, wherein the functional form lical turbulence should show the coupling. The coupling is
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FIG. 4. The relative helicities faia) data | andb) data Il, in the 0.4 — T : =
range 106<k<100, where Fig. 3 showk #? scaling. The relative o C N ETEE; ::4/3
helicity lies between 3% and 10% (g) and between 1% and 5% in L RS : - T

(b). The corresponding ratio of time scales/ 7y [EQ. (6)] is esti-
mated to be up to 32% for data I, up to 22% for data II.

seen explicitly in the Eddy damped quasinormal Markovian
(EDQNM) closure[14].

Figure 5 shows the compensated longitudinal and trans-
verse spectra for simulation Il. The bottleneck is greatly di-
minished inE, (k) [Fig. 5a), solid curvg which shows close
to k™8 scaling throughout the inertial range. Ey(k) [Fig.

5(b), solid curvd, the bottleneck persists although its peak

occurs slightly earlier in wave number than the bottleneck
for the corresponding total spectrum. For completeness, we 0
have also shown the 1D spectra compensatekiByFig. 5, 10
dotted curvep Based on our arguments above, we might (b) k

74/3 ; i
have expected .a strongér _Scal_lng region of the trans- FIG. 5. Compensate@) longitudinal and(b) transverse energy
verse spectrum; such behavior is not clearly observed a'g'pectra for the simulation IE; (k) shows a diminished bottleneck

tfjg/ggh there is a tendency towards a scaling shallower thaghere the full spectruni(k) of Fig. 3(c) has a pronounced bottle-
k™ in the bottleneck regime. We plan in a future work to pneck E (k) shows a range dt 5" coinciding with that of Fig. &)

check the present indications that the bottleneck will beand a persistent bottleneck with a scaling shallower #aff scal-
stronger in the transverse spectrum than in the longitudinghg in the region of the bottleneck.

one because of the greater contamination of the former by
the helical co-spectrum dynamics. This raises the intriguingelative helicities might not be, and indeed have not been
possibility thatry, affects the scaling of transverse structurereported, because the connection between the Kolmogorov
functions, accounting for some of the observed differencé?henomenology, helicity dynamics, and the bottleneck did
between the scaling exponents of longitudinal and transverg@ot exist. There have been various different approaches taken
structure functions in near-isotropic, high-Reynolds numbef© explain this phenomenon, including viscous effe@s]
turbulence datg15]. Such contributions would appear as @nd various kinematic arguments used to fit to a param-
parity breaking in thdsotropic small scales, and might not etrized form[22-24. What we are proposing here is a fun-
be easily disentangled by, for example, the(3Qroup de- damental physical cause of the bottleneck due to the helicity
composition methodfsee Ref[16] and references thergin dynamics slowing down the cascade of energy and helicity,
used to extract isotropic contributions to nonhelical turbu-the two conserved quantities in turbulence. Further, our em-
lence statistics. Although this aspect of the influence of hePpirical evidence, particularly in case I, where the total he-
licity dynamics remains speculative we hope this work pro-licity is negligibly small, indicates that this effect could oc-
vides sufficient motivation for further investigation. cur even in flows with essentially zero mean helicity but with
The bottleneck is a well-known phenomenon which haghonzero relative helicity spectfae., H(k) is not zero every-
been observed in experimental measurem¢h#1g and wherd. Said differently, even iff H(k)Jdk=0, there can be a
Navier-Stokes simulationgl9,20. While the mean helicity ~range ofk where|H(k)| and henceH(k)|/2kE(K) is finite and
of the flows in these investigations might be zéatthough  possibly large enough that/ n,~ [|H(K) |/ 2kE(k)]¥2 is not
many do not report the mean helicity, using the often reasomegligible. This effect was reported in an experimental work
able assumption that the flow is nonhelical on aveyatdpeir  investigating spontaneous reflection-symmetry breaking in

L
0 1 2
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boundary layer flow$11]. Such a scenario may occur since, Ce?353 for k<kg

while global helicity is statistically conserved in the inertial E(k) = Cosh 43 for k. < k< kq (14

range, local helicity is not. Let(x) be the local helicity H '

&(x)=u(x)-m(x). The equation fok¥ reads - {CES—l/gk—5/3 for k<kg s
= 13-4/

G+ UdiE= = 3i(wpp) + 36(wyuld) + V¢ = 23U ()], CHh™HH for ke <k<ka

(11) andCg,Cy,cg, andcy are constants. The precise estimate of
the transition wave numbet. is unimportant to what fol-
Locally, both the nonlinear and the viscous terms in the helows. The upper wave numbé&y denotes the maximum be-
licity dynamics might play a role in enhancing or diminish- yond which the cascade is completely suppressed by viscos-
ing the helicity. If the nonzero relative helicity in the scaling ity. We obtain

range arises from the nonlinear term, then the effects we see D~ p e h-13 kg/g (16)
are indeed valid in the high-Reynolds numb@nviscid) E '
limit; if they arise from the viscous term then the effects we Dy, ~ P33, 17)

see would disappear at very high Reynolds numbers. This
hypothesis is not testable at the present time but our workn Ref. [4] ky=k,~ (/%)Y (the Kolmogorov dissipation
which studies data from simulations which are similar to, orywave numbex In our case, setting;=k, causes the integrals
the same as, several performed befsee, for example, g diverge asv ™ in the limit »—0. The choiceky

Refs. [8,25,2§), with comparable Reynolds number, gives — (h/,3)1/5 ensures that the integrals converge to their cor-
substantial motivation to further examine these questionsect values for the statistically steady stabe=e and Dy,

We hope in particular to motivate measurements of the rela= we will call this new wave numbek, since it depends
tive helicity and scaling behavior of the bottleneck region, ingplely on the helicity dissipation rate. It must be distin-
other flows which report the bottleneck phenomenon, in oryyished from theky of Ref. [27] which depends on both
der to further check this connection. energy and helicity dissipation rates. In the limit-0, k,

We finally present a key result from analysis of the con-s. i “In our simulationsk, >k, by a factor of about 2.5.
vergence of the dissipation integrals for a two-time-scale casyyhjle in agreement with our analysis, we cannot really dis-
cade. In Ref[4] the same analysis was performed assuminginguish between the two wave numbers in these data. How-
a single time scalee. The total dissipation of energy and ever, we suggest that the resolution requirement for measure-
helicity may be written as ments in turbulence with helicity, or more precisely, with
nonzero helicity spectra, might be weaker than that in turbu-

fkc dk I@E(k)‘“fkd dk k2E(k)>, (12 lence without helicity.
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